
Chapter 21 

Drift waves and instabilities* 

We have now considered two types of instabilities that can arise in the fluid 
plasma model: the first, the ideal MHD flute instability (the pressure-driven 
version of the Rayleigh-Taylor instability), which draws upon the rhermal energy 
of the plasma as it expands unstably across a curved (concave toward the plasma) 
magnetic field, and the second, the resistive tearing instability, which draws upon 
the energy of the magnetic field in the plasma as it rearranges itself toward a 
configuration of lower magnetic energy. There is yet a third important class 
of instability of a fluid plasma, the so-called ‘drift-wave instability’, which 
requires neither a curved magnetic field nor a magnetic configuration for which 
lower magnetic-energy states exist. Indeed, drift-wave instabilities occur in the 
simplest and most ‘universal’ of configurations, namely a plasma of non-uniform 
density maintained in equilibrium by a strong and essentially straight magnetic 
field. Because of the pervasiveness of this situation, instabilities of this type have 
sometimes been called ‘universal instabilities’. Like flute instabilities, drift-wave 
instabilities draw upon the thermal energy of the plasma as it expands across a 
magnetic field. Unlike flute instabilities, however, they have finite wavelengths 
along the field, and the plasma motion is decoupled, to a significant extent, from 
that of the magnetic field, so as to avoid energetically unfavorable bending of 
the field lines. Because of the difficulty of drawing upon the thermal energy of 
expansion in this way, drift-wave instabilities tend to have rather small growth 
rates-certainly smaller than those characteristic of flute instabilities. 

Unlike Rayleigh-Taylor, flute and resistive-tearing instabilities, drift-wave 
instabilities are not purely growing, but have complex frequencies w, with the 
imaginary part, denoted by y (the growth rate), usually much smaller than the 
real part. Of course, any such mode of perturbation can be made purely growing 
by transforming to a moving frame in which the wave is at rest, but in such a 
frame the plasma itself will acquire a non-zero velocity. Normally, we choose 
to work in the ‘laboratory frame’ in which the plasma is assumed to be at rest 
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364 Drift waves and instabilities* 

(more precisely, the mass velocity U is taken to be zero) in the unperturbed 
equilibrium state. In such a frame, the drift-wave instabilities have complex 
frequencies w ,  i.e. they are partly travelling waves and partly growing waves. 

Drift waves require non-zero plasma resistivity, or (as we will see in 
Chapter 26) other forms of dissipation, to be unstable. However, the waves 
themselves (i.e. without instability) can exist and propagate in any non-uniform 
plasma. Moreover, as we will see, except at relatively high values of the plasma 
p (but still p << l), drift waves do not produce a significant perturbation of 
the magnetic field. Rather they involve a self-consistent wave-like pattern of 
density perturbations and flow velocities that propagates partly along and partly 
across a fixed, approximately uniform, straight magnetic field. 

21.1 THE PLANE PLASMA SLAB 

We will analyze drift waves in the simplest possible configuration involving a 
non-uniform plasma, the so-called ‘plane plasma slab’. In this configuration, 
there is a plasma with non-uniform density n(x )  and pressure p ( x ) ,  maintained 
in equilibrium by a strong magnetic field, B,. There is no variation of the 
equilibrium in the y or z directions. The plasma is at rest in the equilibrium 
configuration, i.e. U = 0, but there is, of course, a non-zero current density jr (x) 
needed to provide equilibrium, i.e. to provide a j x B force that balances the 
pressure gradient V p .  The magnetic field B, will be modified (and will acquire 
a variation with x)  as a result of the plasma currents, so that the pressure-balance 
condition, p + B,2/2p0 = constant, is satisfied. However, for low values of p,  
the non-uniformity of B, is very small and will be neglected in our analysis. 
The suffix ‘0’ will be used to denote equilibrium quantities, e.g. no(x) ,  p ~ ( x )  
and B,o. 

The new element in our description of a plasma that is needed to 
produce drift waves is the full so-called ‘generalized’ Ohm’s law, introduced 
in equation (8.13), namely 

j x B - V p ,  
ne 

E + u x B =  q j +  (21.1) 

Before embarking upon our stability analysis, we must address the question of 
whether the use of this generalized Ohm’s law, rather than the simple version 
which omits the last two terms on the right-hand side of equation (21.1), has any 
effect on our description of the equilibrium configuration. Clearly, such an effect 
does arise, since satisfying the independent force-balance condition, j x B = V p ,  
where p = pe + pi, will leave an uncanceled term in V p i  on the right-hand 
side of equation (21.1). Thus, it will not be possible to have both U = 0 and 
E = 0 in the equilibrium configuration. Physically, we are encountering here 
the contribution to the fluid velocity from the ion diamagnetic drip which we 
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The plane p l a s m  slab 365 

discussed previously in Chapter 7. Specifically, substituting j x B = V ( p ,  + p i )  
on the right-hand side of equation (21.1) and neglecting, for now, the resistivity 
term, we can solve equation (21.1) for UI, obtaining 

E x B  B x V p j  
+ neB2 ' 

U1 = - 
B2 

(21.2) 

Equation (21.2) tells us that the fluid (mass) velocity across the magnetic field is 
the sum of the E x B drift and the ion diamagnetic velocity, as we would have 
expected, since the ions make the dominant contribution to the plasma mass. 
Clearly, in a non-uniform plasma, U and E cannot both be zero in equilibrium. 
If we have an equilibrium in which the plasma is at rest, i.e. U = 0, there will 
necessarily be a non-zero electric field E, and, conversely, if the equilibrium has 
E = 0, we will need to take into account a non-zero mass-velocity U. 

For present purposes, however, we can simplify the analysis by restricting 
ourselves to the case where the ion pressure vanishes, while the electron pressure 
does not vanish. Physically, this corresponds to a situation where Ti << T,, which 
is a legitimate (and not uncommon) case to consider. Since the equilibrium ion 
diamagnetic drift is essentially zero, this allows us to assume that EO = uo = 0. 
There would be no fundamental difficulty in pursuing the more general case 
with non-zero ion pressure, for example by keeping a non-zero equilibrium 
E field in the stability analysis of a static (i.e. U = 0) equilibrium, but the 
algebraic complexity would be greater, without adding much more insight into 
the underlying drift-wave physics. 

The plasma is uniform and of infinite extent in the y and z directions. Thus 
we can assume that perturbations take the form of plane waves in these two 
directions, so that any perturbation quantity @l (x, t) can be written 

@1(x, t) = $l(x)exp(-iot + ik,y + ik,z) (21.3) 

where &(x) is the amplitude of the wave-like perturbation. Once again, since 
the equilibrium varies in the x direction, we cannot Fourier decompose into 
sinusoidal modes in the x direction, but rather must search for eigenfunctions 
&(x). Our method of analysis will be generally similar to that employed 
in the derivation of the Rayleigh-Taylor and resistive-tearing instabilities in 
Chapters 19 and 20, respectively, except that here we have k, # 0, implying 
that the perturbations have a variation along the main equilibrium magnetic field. 
However, we will look for waves satisfying 

k, << k, (21.4) 

and the outcome of our analysis will show that this inequality is valid for a 
typical drift-wave instability. 
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For our initial derivation of the drift waves, we will keep the magnetic 

perturbations as well as the electric-field perturbations, but we will then show 
that, for low-B plasmas, the magnetic perturbations are unimportant relative to 
the perturbed electric fields E and the associated E x B flow velocities. If 
the magnetic perturbations are neglected from the outset, so that the perturbed 
electric field can be assumed to be derivable from a scalar electric potential, 
i.e. E = -V4, the analysis of drift waves is simplified considerably. We will 
indeed discuss this ‘electrostatic’ limit after we have developed the analysis for 
the more general case. The value of first analyzing the more general ‘finite-B’ 
case in some detail is that it demonstrates the connection to the slow shear AlfvCn 
waves discussed in the previous two Chapters (and in Chapter lS), and it shows 
explicitly how the new drift-wave branch of the spectrum arises at frequencies 
much lower than all AlfvCn wave frequencies, i.e. o << k z U A  << k y U A .  

21.2 THE PERTURBED EQUATION OF MOTION IN THE 
INCOMPRESSIBLE CASE 

We begin with the perturbed equation of motion 

(21.5) 

where, as usual, we use the suffix ‘1’ to denote perturbed quantities. Noting that 
the equilibrium magnetic field is entirely in the z direction, the two components 
of equation (21.5) perpendicular to this equilibrium field are 

(21.6) 

(21.7) 

Here, and henceforth in this Chapter, we omit the suffix ‘1’ from perturbed 
quantities whose equilibrium values are zero, e.g. U, , u y  , B, and B y .  In deriving 
equations (21.6) and (21.7), we have noted that Bo has only a component in the 
z direction, so (BI -V)Bo does not contribute anything to the x and y components 
of equation (21.5). 

We now argue that the term in B,1 in equations (21.6) and (21.7) contributes 
significantly to the right-hand side of these equations, i.e. to the force arising 
from the gradient of the magnetic pressure, even for Bzl values that are so small 
that they do not make a significant contribution to the divergence of the magnetic 
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field. Using equation (21.7) for our estimates, we see that the contribution from 
B, 1 to the perturbed magnetic-pressure gradient is comparable to the contribution 
from By if 

B,l - (k,lky)By. (21.8) 

The condition that the perturbed magnetic field be divergence-free is 

(21.9) a BX - + ik, By + ik, B,] = 0 
ax 

and we see immediately that the contribution from B,1 is negligible compared 
with that from B, if k, << ky, as we have assumed. Thus, the divergence-free 
magnetic field condition becomes essentially 

a BX - + ik,B, = 0 
ax 

(21.10) 

the same as for the Rayleigh-Taylor (flute) and resistive-tearing instabilities, 
both of which had k, = 0. 

We will also see below that B,1 values which contribute significantly to the 
magnetic-pressure gradients in equations (21.6) and (21.7) are much smaller than 
those which would arise if we allowed the main magnetic field to be compressed 
significantly. Thus, as in the case of the Rayleigh-Taylor (flute) and resistive- 
tearing instabilities, we want to look for solutions with the property that the 
flow U is such that the B, field is not compressed. The consequence of these 
approximations is that the perturbed magnetic-field component B, 1 will play no 
role in determining the plasma flows and density perturbation, and it will not, 
finally, appear anywhere else in our analysis, except in equations (21.6) and 
(21.7). 

Accordingly, it is convenient to use our now-familiar technique for 
eliminating B,1 from equations (21.6) and (21.7), namely taking the x derivative 
of equation (21.7) and subtracting ik, times equation (21.6). We obtain 

- k;Bx) (21.11) 
Poky 

where we have used a/ax of equation (21.10) to obtain the second form of the 
right-hand side. 

Any flow U that arises will be associated with an electric field E l  E U x B 
and will result in compression of the magnetic field B,, described by 

E [V x (U x B)], (2 1 * 12) a Bz 
a t  
- 
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the approximate equality indicating that some smaller terms in Ohm’s law are 
being neglected. Equation (21.12), to first order, gives 

(21.13) 

Unless the right-hand side of equation (21.13) effectively vanishes, there would 
arise from compression of the B, field a perturbation of magnitude given roughly 
by B,I - B , o k y u y / ~ .  If we were to substitute this into equation (21.7), we would 
find the ratio of the inertia term on the left to the term in B,1 on the right to 
be co2/k;v i ,  where U A  is the AlfvBn speed, B / ( p o p ~ ) ’ / ~ .  Similarly, if we used 
the term U, in equation (21.13) to eliminate B , ] ,  then we would substitute this 
into equation (21.6) and would find the ratio of the inertia term on the left to 
the term in B,1 on the right to be u 2 / k : u i ,  where k, - a/ax. Since we will 
find that drift waves are generally characterized by k, - k,,  these two estimates 
are similar. However, we want to look for frequencies much smaller than k , u ~  
(at most of order ~ , u A ,  where k, << k,  - k x ) ,  so we cannot allow the large 
B,1 values that would arise if this degree of compression of the B, field were 
to occur. Thus, we can write 

- + ik,u, = 0. 
ax 

(21.14) 

We note that this is not, in this case, the condition for exactly incompressible 
fluid flow, which would involve an additional term ik,u, on the left-hand side of 
equation (21.14). Indeed, it is only the flow perpendicular to the magnetic field 
that is required to be incompressible; an arbitrary flow along the field can be 
added without contributing anything to the compression of the magnetic field. 
Nonetheless, for most cases of interest, including drift waves, both k ,  and U, 
are relatively small, so that a term ik,u,, even if added to the left-hand side of 
equation (2 1.14), would make little difference. 

Our argument for incompressibility, which has been invoked for the 
Rayleigh-Taylor (or flute) instability, the resistive-tearing instability and now 
for the drift wave, can be expressed in terms of the various types of Alfv6n 
waves discussed in Chapter 18. Essentially, these three instabilities all arise in 
the linearly polarized shear AlfXn wave branch of the low-frequency ‘spectrum’, 
rather than in the magnetosonic wave branch. The physical reason for this is 
that these shear AlfvCn waves do not require the large amount of energy that 
would be needed to compress the magnetic field, with the result that they are 
most easily driven unstable by relatively weak sources of free energy. Since 
perpendicular compression is not involved, the shear AlfvBn waves can also 
have much smaller frequencies, in the case k, << k, .  For the case of drift 
waves, for which we will derive a dispersion relation that displays explicitly 
the coupling to the shear AlfvBn waves, we will find frequencies in the range 
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w < kzvA (often w << kzuA), to be compared with the much larger frequencies, 
w - kyvA,  characteristic of the magnetosonic waves. 

Using the incompressibility condition, equation (21.14), to substitute for u y  
in terms of U, on the left-hand side, equation (21.11) becomes 

where, on the left-hand side, we have made the simplifying assumption that po is 
not strongly varying with x on the scale of distances over which the perturbations 
vary significantly. Basically, we are assuming here that the effective wavelength 
of the perturbation in the x direction is much shorter than the scale-length of 
the equilibrium density variation. 

In cases such as this, where the wavelength of a perturbation is much 
shorter than the scale-length over which an equilibrium varies, we can use the 
'WKB approximation', introduced in Chapter 15. The perturbation will adopt an 
approximately wave-like form, although the local wave-number k,  will adjust 
itself gradually to local conditions. For any general perturbed quantity $1 ( x ) ,  
the WKB approximation is adopted by writing 

(21.16) 

where the amplitude $1 and the effective wave-number k,  are both slowly 
varying functions of x ,  i.e. they vary on the scale of the equilibrium variation. 
A full application of the WKB approximation allows actual eigenfunctions to be 
obtained, i.e. forms for $1 ( x )  as well as for k , ( x ) ,  but for present purposes it is 
sufficient simply to introduce a wave-number k,,  as in equation (21.16), implying 
that the perturbation is wave-like in x .  (Effectively, the WKB approximation 
generates eigenfunctions by approximating to successive orders in an expansion 
in ( k X L n ) - ' ,  where L, is the typical scale-length of the density non-uniformity; 
equation (2 1.16) represents the lowest-order eigenfunction.) When x derivatives 
are taken, we may simply use the rule a / a x  + ik,, just as if the perturbation 
were exactly of plane-wave form. 

Applying this technique to equation (21.13, we obtain 

(21.17) 

where k: = k: + k;.  Equation (21.17) may be rewritten 

W U ,  = - k , v ~ B , / B , o .  (21.18) 

Equation (2 1.18) is as much information as we can obtain from the perpendicular 
components of the perturbed equation of motion, because we have now reduced 
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the independent variables to two, namely U, and B,, which will be related to 
each other also through Ohm’s law. 

21.3 THE PERTURBED GENERALIZED OHM’S LAW 

We turn next to the generalized Ohm’s law for the first-order perturbed quantities, 
namely 

El + U I  x Bo = qjl + -Q x B - Vpe)l (21.19) 
1 

ne 
which, when coupled with Faraday’s law, i.e. 

- -V x El aB1 
at  
-- (21.20) 

must yield another relation between B, and U, to combine with equation (21.18). 
Substituting equation (2 1.19) into equation (21.20) and employing our usual 
expansion of V x (u1 x Bo) (see, for example, equation (19.6)), we obtain 

aB1 
a t  1 1 

- (Bo-V)ul -(U1 *V)Bo-Bo(V.ul)-Vx qjl + -Q x B - Vp,)l . 
(21.21) 

Examination of the size of the various terms in the generalized Ohm’s law 
shows that the additional terms on the right-hand side of equation (21.19), i.e. 
the last two terms, are of much more importance in the component parallel to 
the magnetic field than they are in the components perpendicular to the field. 
To see this, we simply note that the equation of motion tells us that 

( ne 
-- 

au1 
a t  

Q x B - Vp,)l x po- = -iopoul (21.22) 

and so the ratio of the magnitude of the last two terms on the right-hand side in 
the perpendicular components of equation (21.19) to the magnitude of the second 
term on the left-hand side is of order opolul I/nelul IB M wM/eB X W/Wci ,  

where wci is the Larmor frequency of the ions. For waves, with o << oc,, 
these additional terms on the right-hand side in the perpendicular components 
of equation (21.19) are unimportant and may be neglected. However, the new 
terms must be retained in the parallel component of the generalized Ohm’s law, 
which becomes 

(21.23) Eli = vjil - ~ V i i ~ e .  

Noting that the equilibrium magnetic field is entirely in the z direction, 
equation (21.23) to first order in the perturbations can be written 

1 

E, = qj,  - - ne (‘ BzO dx Ikzpel + -- (21.24) 
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where, in accordance with our usual convention, we have dropped the suffix 
‘1’ from the perturbed quantities E,  and j,, whose equilibrium values are zero. 
Note the appearance of the third term on the right-hand side of equation (21.24), 
which arises from observing that the operator VII means (6 V), where b is the 
unit vector in the direction of B, so that 

(21.25) 

(Strictly, we should note that jy is non-zero in the equilibrium, and hence will 
require a small but non-zero -u,~B,o = qjyo. As we saw in Chapter 12, this 
u , ~  is the fluid velocity due to collisional diffusion. In the perturbed form of 
equation (21.23), there will be an additional term qByjyo/B,o on the right-hand 
side. This extra term is very small, since the resistivity q is generally very small; 
comparing it with the last term on the right-hand side of equation (21.24), we 
find it to be of relative order v,i/w,, where we have written q in term of uei 
and assumed B, - By.) 

Using equation (21.24) for the parallel component of the generalized Ohm’s 
law, but assuming that E l  = -U x B is a satisfactory approximation for 
the perpendicular components, so that the vector inside the curl operator in 
the last term in equation (21.21) retains only its component parallel to B, i.e. 
[qjll- (Vllpe)/ne]lb, the x and y components of equation (21.21) can be written 

-iwB, = ik,B,ou, - ik, 

-iwB, = ik,B,ou, + 
ax 

although the second of these equations is redundant once equations (21.10) and 
(21.14) have been established, and so it is not used further in our analysis. We 
now use Ampere’s law, V x B = together with equation (21.10) to express 
By in terms of B,, to obtain an expression for j, in terms of B,: 

(21.27) 

with k: = k,” + ky” and where the WKB approximation has been invoked in the 
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final step. From equation (21.26), we now obtain 

wBx +kzBzoux = --klBx - - ikzpel + -- Bx dpeo). (21.28) 
PO irl ne ky ( Bzo dx 

The electron pressure perturbation pel still needs to be eliminated in favor of 
B, and u X .  It will be determined by an equation of state, which relates pel  to the 
density perturbation riel, which in turn will be determined from the perturbed 
continuity equation. Physically, the most appropriate assumption will be that 
the electrons are isothermal, which is equivalent to assuming that the electron 
thermal conductivity is sufficiently large to maintain a uniform temperature Te 
along the magnetic field, i.e. 

B * V T e  = 0. (21.29) 

Allowing for the possibility of a temperature gradient across the field in the 
equilibrium, i.e. Te0 = Td(x), the perturbed form of equation (21.29) is 

(21.30) 

Using Pel = TeOnel + neoTel, it follows that the term in parenthesis on the 
right-hand side of equation (21.28) is given by 

(21.31) 

Equation (21.31) may be substituted into equation (21.28), which has the effect 
of eliminating the pressure perturbation pel  in favor of the density perturbation 
ne]. 

The continuity equation to first order in the perturbations, i.e. 

where we have used V . ul = 0, can be written 

(21.33) -iwnel + U,- + ikzneouz = 0. 

The perturbed velocity parallel to the equilibrium magnetic field, U,, must be 
obtained from the parallel component of the equation of motion. Although 

dneo 
dx 
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we have already made use of the perpendicular components of the equation of 
motion, we have not yet used the parallel component, which is 

To first order, the perturbed form of equation (21.34) becomes 

(21.34) 

(21.35) 

where we have again used equation (21.31). We can substitute equation (21.35) 
into equation (21.33), to obtain 

We have now obtained an expression for the density perturbation, and hence 
also the electron pressure perturbation, in terms of ux  and B,. 

We now substitute equation (21.31) into equation (21.28) and then 
substitute for n,l from equation (21.36). This involves a significant amount 
of straightforward manipulation, which proceeds most easily by first noting that 
equation (21.36) can be rewritten 

(21.37) 

where C, = (Te/M)'I2 is the plasma sound speed (i.e. the ion thermal speed 
evaluated with the electron temperature). Using this in equation (21.3 l) ,  which 
is then substituted into equation (21.28), we obtain 

Bx dneo 
B,o dx Bzo dx U~ - kZC: 

U dneo U& + kZBZoux ikznel + -- = -- 

Here 

(21.38) 

(21.39) 

is very similar in form to the electron diamagnetic drift velocity (see Chapter 7), 
the minus sign coming from the electron's charge, -e. (Note that ude is not 
exactly the electron diamagnetic drift velocity, as defined in Chapter 7, in which 
dpd/dx would appear, rather than Te(dn&/dx). Thus, U& differs from the 
diamagnetic drift velocity if there is a temperature gradient across the magnetic 
field. In magnitude and sign, however, the two velocities are, of course, generally 
similar.) 
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21.4 THE DISPERSION RELATION FOR DRIFT WAVES 

By combining equation (21.38) with the relation between U, and B, 
obtained from the perpendicular components of the equation of motion, i.e. 
equation (21.18), we obtain the dispersion relation for the waves under 
investigation, namely 

In the limit of zero resistivity, we see that there are two distinct branches of the 
dispersion relation. One branch has 

w = kzVA (21.41) 

and clearly corresponds to the shear AlfvCn wave. The second branch has a 
dispersion relation 

k: C: 
W - kyUde - - = 0 (21.42) 

and corresponds to the ‘drift waves’. In a uniform plasma, for which Vde = 0, 
this is just the ion sound wave encountered in Chapter 16, with kAD << 1. Since 
equation (21.42) is quadratic in w, for given values of k ,  and k, there are two 
branches of the drift wave, i.e. two possible values of w, as shown in Figure 21.1. 
The branch for which w has the same sign as k ,  (upper curve in Figure 2 1.1) 
is usually called the ‘electron drift wave’; the other branch (lower curve in 
Figure 21.1) is usually called the ‘ion branch’ of the drift wave, although, for 
reasons that will soon be apparent, this branch is of less interest. In the limit in 
which k,C,  << kyude, the electron drift wave has the frequency 

w 

O ky U&.  (21.43) 

(The ion branch of the drift wave as shown in Figure 21.1 violates the convention 
introduced in Chapter 15 that real frequencies w are taken to be positive. If we 
are interested in this branch, we can satisfy the convention by simply reversing 
the sign of k, .  Physically, the ion branch of the drift wave propagates in the 
direction opposite to that of the electron diamagnetic drift.) 

Problem 21.1 : By solving the quadratic equation, equation (21.42), 
for w exactly, draw a more accurate version of Figure 21.1, plotting 
the dimensionless frequency w / k y u d e  versus the dimensionless quantity 
kz cs/ ky ude . 
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Equation (21.40) indicates that the effects of non-zero resistivity are to 
couple the shear AlfvCn and drift-wave branches of the spectrum together and to 
add an imaginary part (either a growth rate or a damping decrement, depending 
on sign) to the frequencies of each of the branches. 

Figure 21.1. Electron and ion branches of the drift-wave dispersion relation. Both 
branches approach asymptotes w = &k,C,. 

In order to proceed further, we must consider the typical magnitudes of 
First, we note that the various frequencies appearing in equation (21.40). 

C, EE ( T e / M ) ' f 2  and U A  B / ( p o n M ) ' f 2 ,  SO that 

c s / V A  = (ponTe>' l2 /B W (8/2)'12 (21.44) 

indicating that the sound-wave frequency, k,C,, is very much smaller than the 
shear AlfvBn wave frequency in all cases where the plasma 8 value is very 
small. 

Second, we note that Vde = T e / e B L , ,  where L ,  = n/(dn/dx), the scale 
length of the density non-uniformity, so that 

ude/Cs = (MTe>'I2 /eBL,  PZ r h / L n  (21.45) 

where rLs: = ( M T e ) ' f 2 / e B  = Cs/wcir the average Larmor radius of the ions 
evaluated as if the ions had the electron temperature. The ion Larmor radius 
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rLi in a magnetized plasma is usually very much smaller than any macroscopic 
scale-length. Furthermore, although our treatment of drift waves has assumed, 
for simplicity of analysis, that << Te, the disparity in the two temperatures is 
not usually sufficient to make r h  more than a few times, at most, larger than rL,. 
Thus, in many cases of interest, we can assume that Vde << C,. It follows that 
the ratio of the two frequencies appearing in the drift-wave dispersion relation, 
equation (21.42), namely kyVde/kzC,, is very small, unless 

k, << k, (21.46) 

or, more specifically, k,/ky - rLs/Ln for the two frequencies kyUde and k,C, to 
be comparable. 

Since a finite number of wavelengths A, = 2n/k, and A, = 2n/k, must 
‘fit’ into the plasma in the y and z directions, respectively, it follows that our 
‘plane plasma slab’ must be much more extended in the z direction than in 
the y direction, by roughly the ratio L, , / rL ,  for the drift wave to be clearly 
distinguishable from the ion sound wave. If the plasma slab is infinite in both 
y and z directions, as it strictly is within our model, then all k, and k, values are 
allowed but, as we will see, the most unstable perturbations will be much more 
extended in the z direction. The infinite plasma slab will be a good representation 
of a finite-size plasma, provided the wavelengths in both y and z directions are 
much shorter than the y and z dimensions of the finite plasma, respectively. 

To retain both branches of the drift waves shown in Figure 21.1, we 
take kyvde - k,Cs, in which case the typical ordering of the frequencies in 
equation (21.40) is 

the inequality following from B << 1 .  

higher-frequency branch, the shear AlfvCn wave, with 

kyude ‘v kzCs << kzVA (21.47) 

In this case, even with resistivity included, equation (21.40) divides into a 

and a lower-frequency branch, the drift wave, with 

(21.48) 

(2 1.49) 

This separation into two branches of the dispersion relation (21.40) can 
be derived by first looking for high-frequency solutions, w - kzvA, for which 
the inequality given in equation (21.47) implies that the second of the two 
factors in parentheses on the left in equation (21.40) is approximately unity, 
thereby yielding equation (21.48). Next, looking for low-frequency solutions, 
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w - kyude - k,C,, the same inequality, i.e. equation (21.47), implies that the 
first of the two factors in parentheses on the left-hand side of equation (21.40) 
is simply -k:ui/w, thereby yielding equation (21.49). The fundamental 
assumption that permits this division into two distinct branches of the dispersion 
relation is that << 1 ,  which produces a wide separation between the lower 
frequency drift waves with w - kyude - kzCS, and the higher frequency shear 
AlfvCn waves with w - k, U A .  

We examine the effect of resistivity first on the shear AlfvCn waves. 
Neglecting the imaginary term from resistivity in equation (21.48), we have 
at lowest-order the familiar solution w - fk,uA. Treating the imaginary term 
on the right-hand side of equation (21.48) as a small correction and allowing 
w to acquire a correspondingly small imaginary part, w --f w + iy (where 
w and y are now both assumed real, with y / w  << 1), the imaginary part of 
the left-hand side of equation (21.48) is simply y + ( k z u i / w 2 ) y  x 2y, which 
yields y x - r ]kf /2 j .~o ,  indicating that the shear Alfvtn waves are damped 
by resistivity (negative y) .  The damping decrement is essentially the rate of 
resistive diffusion of magnetic field over a distance of order a perpendicular 
wavelength-a physically intuitive result unrelated to the present topic of drift- 
wave physics. 

Carrying out a similar analysis of equation (21.49), we find a lowest-order 
dispersion relation for w that is the same as equation (21.42) whose solutions are 
shown in Figure 21.1. Then, letting w + w+iy and equating the imaginary part 
of order y on the left-hand side of equation (21.49), which is y + (kzC: /w2)y ,  
to the imaginary expression on the right-hand side, in which only the real part 
of the frequency w need be used, we obtain 

r]k: w2(w2 - kzC:) 
PO kZui(w2 + k:C,2) ’ 

y = -  (21 S O )  

Equation (21.50) shows that the drift wave is unstable whenever JwI > Ik,C,I. 
Referring to Figure 21.1, we see that the electron drift wave (the upper curve 
in Figure 21.1) is always unstable (positive y) ,  although the growth rate will 
diminish rapidly as w approaches the asymptote k,C,, whereas the ion branch 
of the drift wave (the lower curve in Figure 21.1) is always damped. The 
electron drift wave destabilized by resistivity is usually called the ‘resistive drift 
instability’. 

In the simple case where kyude >> k,C,, the frequency and growth rate of 
the resistive drift wave instability are given by 

where, in the second form of the expression for the growth rate y ,  we have 
substituted r]  veim/ne2, where v,i is the electron-ion collision frequency, and 
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ut,e = (Te/m)'I2 is the electron thermal velocity. The growth rates of resistive 
drift instabilities tend to be quite small. Specifically, since k y u d e  << kzuA,  the 
first expression for y in equation (21.51) shows that the growth rate must be 
very small compared with the rate of resistive diffusion of magnetic field over 
a distance of order a perpendicular wavelength, i.e. g k i / p o .  For perpendicular 
wavelengths much longer than the ion Larmor radius (evaluated with the electron 
temperature), i.e. k l rLs  5 1, and for k y u d e  5 k,C, << kyUt ,e7  the second 
expression for y in equation (21.51) shows that the growth rate must also be 
very much less than the electron-ion collision frequency ve,. On the other 
hand, since y c( k:k;/k:,  the growth rate increases rapidly as the perpendicular 
wavelength decreases or as the parallel wavelength increases. Thus, for very 
short perpendicular wavelengths (down to some limit of order the ion Larmor 
radius, below which our analysis would not be valid) and for very long parallel 
wavelengths, the growth rates of resistive drift instabilities can be appreciable. 
Since the parallel wavelength is limited only by the length of the plasma slab in 
the z direction, drift-wave instabilities tend to be most serious for plasmas that are 
very extended along a straight, unidirectional magnetic field. Not surprisingly, 
drift waves are quite strongly affected by the introduction of magnetic shear, i.e. 
an equilibrium component B y 0 ( x ) ,  as was discussed in the context of resistive 
tearing instabilities in Chapter 20. 

Drip waves and i n s t a b i l i t i e s  * 

Problem 21.2: Using the same dimensionless quantities for the two 
axes, add the shear Alfven wave, whose dispersion relation is given by 
equation (21.41), to the figure drawn in Problem 21.1. To do this, you 
need to choose a specific value of j3 in order to relate C, to uA using 
equation (21.44): take j3 = 0.02. Using equation (21.40), indicate which 
branches of the dispersion relation in the upper (electron) half of your 
figure become unstable when a small amount of resistivity q is added. 
By what factor must our 'plane plasma slab be more extended in the 
z direction than in the y direction to allow waves with w - k y u d e  - kzuA:  
give your answer in terms of the quantities rLs/Ln and B .  

Problem 21.3: Examine analytically the region where the two branches 
of the dispersion relation in the upper half of the figure which you have 
produced in Problem 21.2 appear to cross each other, i.e. the region 
w = k y u d e  x k z u A .  For the purpose of this analytic calculation, you may 
assume j3 --f 0, i.e. C J U A  -+ 0. By choosing some particular k ,  value 
in this region, for example that given exactly by kzuA = k y u d e ,  show from 
equation (21.40) that there is an instability with a growth rate that scales 
like g ' l 2 ,  rather than like q ,  for small values of the resistivity. (Hint: You 
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will find it useful to note that the frequency is given approximately by 
0 x k y U &  = so that equation (21.40) may then be used only to 
calculate the small complex correction to this frequency.) This more- 
rapidly growing instability arises from a coupling between the drift wave 
and the shear Alfven wave. 

21.5 ‘ELECTROSTATIC’ DRIFT WAVES 

The astute reader may suspect that the limit w << k z u A ,  in which the 
lower-frequency drift wave separates from the shear AlfvCn wave in the 
dispersion relation equation (2 1.40), corresponds to the case where the magnetic 
perturbations play essentially no role in the dynamics. In this sense, the drift 
wave is sometimes called ‘electrostatic’. 

We can see this by noting that our analysis of the perturbed generalized 
Ohm’s law, with the added assumption that the perturbed electric field is 
constrained so as to produce negligible magnetic perturbations, is essentially 
sufficient by itself to produce the drift-wave dispersion relation: comparing 
equation (21.38) with equation (21.40), we see that the shear AlfvCn wave 
branch of the dispersion relation arises from retaining the term wB, in the 
first factor on the left-hand side of equation (21.38). This, in turn, arises from 
retaining the B term in the perturbed Ampere’s law, i.e. the term on the left- 
hand side of equation (21.26). Neglecting these terms is equivalent to looking 
for modes in which the perturbed E fields adjust themselves so as to avoid 
producing significant magnetic perturbations. This will necessarily involve a 
non-zero perturbed Ell as well as E l ,  but the generalized Ohm’s law allows 
this perturbed Ell to be balanced by the parallel perturbed electron pressure 
gradient. If we neglect the term wB, in the first factor of the left-hand side 
of equation (21.38), but keep all of the other terms, using equation (21.18) to 
provide another relation between U, and B,, we obtain the drift-wave branch of 
the dispersion relation, i.e. equation (21.49). 

The derivation of the drift-wave dispersion relation is simplified 
considerably if we make this ‘electrostatic’ assumption from the outset. 
Specifically, the ‘electrostatic” approximation amounts to assuming that the 
components of the perturbed electric field, El, are related to each other by 
the requirement that V x El = 0, which implies that the perturbed electric field 
can be written as the gradient of a scalar potential 9, i.e. 

E = -VI$ (21.52) 

where we have dropped the subscript ‘l’, since both E and I$ are zero in the 
equilibrium. 

Copyright © 1995 IOP Publishing Ltd.



380 Drift waves and instabilities * 
As we have seen, the generalized Ohm’s law for the perturbed quantities, 

i.e. equation (21.19), divides into components perpendicular to the magnetic 
field, for which the approximation 

UI x E x BIB2 (21.53) 

will suffice, and a component parallel to the magnetic field, in which all of the 
terms must be retained, i.e. 

(21.54) 

Noting that the equilibrium magnetic field is in the z direction and that the 
perturbed magnetic field is to be neglected, equation (21 S4) to first order in the 
perturbations can be written 

(21.55) 

In the electrostatic approximation, equation (21 S3) tells us that 

U, = E,/B,o = -ik,@/B,o (21.56) 

so that 
E ,  = -ik,@ = k, B,ou,/ k, 

in which case equation (21.55) becomes 
(21.57) 

ik T 
ne k,B,Ou, = k, ( q j ,  - %) = k, ( q j ,  - - &nel) .  (21.58) 

In the second form of equation (21.58), we have again made the assumption 
that the electron temperature must remain uniform along the (now straight and 
unperturbed) magnetic field. 

To obtain the density perturbation, riel, in terms of U,, we proceed in much 
the same way as before, i.e. we combine the continuity equation 

(21.59) 

with the parallel component of the equation of motion 

-iwpou, = -ik,Teonel (21.60) 

(see equations (21.33) and (21.35)). We substitute for U, from equation (21.60) 
into equation (21.59), thereby obtaining n,l in terms of U,, which is then 
substituted into equation (21 33). This gives 

(21.61) 
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It remains only to relate the perturbed current density j ,  to the mass velocity 
U, by the equation of motion. Our procedure here is somewhat different from 
before, in that we do not want to express the forces arising from current-density 
perturbations, such as j,, in terms of the perturbed magnetic fields, as was 
done in equations (21.5)-(21.1 l), because these perturbed magnetic fields are 
neglected, and so are not being otherwise calculated. Rather, we want to deal 
with the current-density perturbations directly. The x and y components of the 
perturbed equation of motion, equation (21 S), can be written 

(21.62) 

noting that terms such as j ,  By and j ,  B, will be second order in the perturbations 
and may therefore be omitted. Taking a/ax of the second of these and 
subtracting ik, times the first, thereby eliminating the pressure perturbation pl 

(a familiar procedure), we obtain 

= ik, B,ojz (21.63) 

where, in the second step, we have made use of the divergence-free property 
of the perturbed current density. Invoking the incompressibility of UI, i.e. 
equation (21.14), and using the WKB approximation to express a/ax as -ik,, 
equation (21.63) gives 

(21.64) 

where k: = kz + k;. 
dispersion relation 

Substituting this into equation (21.61) gives a final 

(21.65) 

exactly the same as equation (21.49). In the case where kyude << kzCs, the 
frequency of the drift wave becomes simply w kyude and its growth rate is 
given in equation (21.51). 

We conclude that magnetic-field perturbations play no essential role in 
the dynamics of the low-B drift wave. Rather, the drift wave is produced 
by a perturbed electric field, whose perpendicular components give rise to 
perpendicular plasma flows, and whose parallel component is force-balanced 
self-consistently by the perturbed electron pressure gradient along the magnetic 
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field. Without resistivity, equation (21.54) tells us that the peaks in the 
electron pressure (or equivalently, the electron density) along the magnetic field 
coincide exactly with the peaks in the electric potential 4. Indeed, assuming as 
before that the electron temperature remains uniform along the magnetic field, 
equation (21.54) (without the resistivity term) has the familiar exact nonlinear 
solution ne a exp(e$/ Td) ,  which reflects the tendency of the electrons to adopt 
a Boltzmann distribution along the magnetic field. In the drift wave, without 
resistivity, the electron density perturbation will be exactly in phase with electric 
potential perturbations. Introduction of non-zero resistivity produces a small 
phase shift between the density and potential perturbations. It is this phase shift 
that allows the drift-wave flow pattern to extract energy from the thermal energy 
available in the pressure gradient of the electrons to provide for unstable growth 
of the wave energy. 

The analysis of drift waves presented in this Chapter has made several 
simplifying assumptions, in particular that the equilibrium magnetic field is 
straight and essentially uniform and that the ions are essentially ‘cold’, i.e. 
Ti << T,. The introduction of non-zero ion temperature, i.e. - T,, would have 
the predictable effect of bringing the ion diamagnetic drift into the theory, in 
addition to the electron diamagnetic drift. However, this would not introduce 
any qualitative change in the stability properties of the drift wave, at least not 
for the ‘electron branch’. The frequency of the ‘ion branch’ of the drift wave 
would be modified and, if additional dissipative effects are included, this branch 
can sometimes be destabilized, but we defer this topic until we are able to 
treat drift waves from a ‘kinetic’ viewpoint (see Chapter 26). Modifications 
to the equilibrium geometry of greatest impact are those that eliminate very 
small values of the wave-vector parallel to the magnetic field, namely k, in 
our case of a straight, uniform field. Finite-length limitations, or the periodic 
boundary conditions that would be appropriate for a toroidal plasma, rather than 
an infinitely long plasma slab, are examples where lower limits are imposed on 
k,.  If the magnetic field is slightly sheared, i.e. a component B,,(x) is added to 
the larger B, component (see Chapter 2!), then the effective parallel component 
of the wave-vector becomes kll = k B x k, + k y B y ( x ) / B Z ,  which assumes a 
range of values as a function of x depending on the width of the mode in the 
x direction. All ‘finite-length’ and ‘shear’ effects tend to be stabilizing, but a 
detailed analysis of these effects is outside the scope of this book. 

Of perhaps more fundamental concern is the validity of the fluid model 
itself, with its implied assumption that the electrons remain Maxwellian, with 
a temperature that remains uniform along the magnetic field. We have seen 
in Chapter 12 that the electron thermal diffusivity along a magnetic field is a 
quantity of order u?,/uei. For the electron temperature to remain essentially 
uniform along the magnetic field in the presence of a drift wave with frequency 
o and wave-number k, along the field requires that o << k ~ u ~ , / u , i .  Thus, the 
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electron collision frequency cannot become arbitrarily large without violating our 
assumption of isothermal electrons and requiring a more complete fluid model 
including parallel temperature gradients. Moreover, inspection of the second 
form of the growth rate y given in equation (21.51) shows that for o - kyude 
the growth rate is then limited to values satisfying y / w  << kirzs .  Again, we see 
that drift-wave growth rates are appreciable only for perpendicular wavelengths 
that do not exceed by much the ion Larmor radius, although it should be noted 
that, because of our assumption that Tj << T’, our analysis has not implied an 
expansion in klrh. The validity of the fluid model also requires that the electron 
collision frequency not be too small. Specifically, for collisions to maintain a 
Maxwellian distribution along the magnetic field, the mean-free path must be 
shorter than the parallel wavelength, which requires k,vt.’ << u,i. If this latter 
requirement is not satisfied, a ‘kinetic’ version of the ‘electron branch’ of the 
drift wave must be found, which is discussed in Chapter 26. 

There is a vast literature on drift waves in non-uniform plasmas. An account 
of the early work in the field is to be found in an article by N A Krall (1968, 
in Advances in Plasma Physics 1, edited by A Simon and W B Thompson 
New York: Interscience), which discusses the ‘kinetic’ versions of the drift wave, 
to be introduced in Chapter 26, as well as the fluid versions which have been 
described in the present Chapter. 
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